

Reg.	No.	:	***************************************
------	-----	---	---

Name:.....

Fourth Semester B.Tech. Degree Examination, February 2015 (2008 Scheme)

Branch : Electrical and Electronics
08.403 : ENGINEERING ELECTRO MAGNETICS (E)

(Special Supplementary)

Time: 3 Hours

Max. Marks: 100

Instruction: Answer all questions from Part A and any one full question from each Module of Part B.

PART-A

- 1. Give the spherical co-ordinates of the point whose Cartesian co-ordinates are X = 3, y = 4, z = 5.
- 2. Derive the relationship between electrostatic field and electric potential.
- 3. State and explain Coulomb's law.
- 4. A scalar potential is given by

$$V = x^2 + 3y^2 + 9z$$
 volt. Find F at P(1, -2, 3).

- 6. Derive the expression for the inductance of a torroidal coil.
- 7. In a field H = [y cos (α x)] a_x + (y + e^x) a_z . Find the current density J over the y z plane
- 8. Define propagation constant and attenuation constant.

- 9. Explain standing wave ratio and its significance.
- 10. A lossless transmission line with a characteristic impedance of 75 $\,\Omega$ is terminated by a load impedance of 120 $\,\Omega$. If the magnitude of the incident wave is 10 volt. Calculate the minimum and maximum values of voltage on the line.

 $(10\times4=40 \text{ Marks})$

PART-B

(20×3= 60 Marks)

Module-I

11. a) Obtain the spherical co-ordinates of 10 $\stackrel{\rightarrow}{ax}$ at the point

P(x = -3, y = 2, z = 4).

10

10

b) Four point charges are located at the corners of a square on x - y plane. Side of square = a m and four charges are q, 2q,3q and 4q. Find E at the centre of the square.

OR

- a) Explain cylindrical co-ordinate system and differential elements in cylindrical co-ordinate system.
 - b) Derive an expression for Electric field intensity as a point due to an Electric Dipole.

Module - II

13. a) Derive Poisson's and Laplace's Equations.

10

10

b) Define curl. Give its physical significance. Also explain Stokes theorem element.
 10

14. a) Derive an expression for magnetic field intensity H on the axis of a circular current loop of radius a m and carrying a current of I amperes. Specialize the result to the centre of the loop.

b) Find the force on a straight conductor of length 0.5 m carrying a current of 10.0 A in the $-\overline{a_y}$ direction, where the field is B = 4.5 × 10 $^{-3}$ $(\overline{a_x} + \overline{a_y} - \overline{a_z})$ Tesla.

10

10

10

Module - III

- 15. a) Calculate the attenuation constant and phase constant of a uniform plane wave with frequency 5 Ghz in polythelac for which $\mu = \mu_0$, $\epsilon_r = 2.3$ and $\sigma = 256 \times 10^{-4} \, \text{T} / \text{m}$.
 - b) Derive transmission line equations.

OR

- 16. a) Distinguish between conduction and displacement currents.
 - b) Derive the wave equations for a conducting medium from Maxwell's equations. 10

